Source code for jscatter.structurefactor.fluid

# -*- coding: utf-8 -*-
# written by Ralf Biehl at the Forschungszentrum Jülich ,
# Jülich Center for Neutron Science 1 and Institute of Complex Systems 1
#    Jscatter is a program to read, analyse and plot data
#    Copyright (C) 2015-2024  Ralf Biehl
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
#


import sys
import os
import numbers
import inspect
import math

import numpy as np
from numpy import linalg as la
import scipy
import scipy.integrate
import scipy.fft
import scipy.constants as constants
import scipy.special as special

from ..dataarray import dataArray as dA
from ..dataarray import dataList as dL
from ..graceplot import GracePlot as grace
from .. import formel

from ..libs import Two_Yukawa

try:
    from .libs import fscatter

    useFortran = True
except ImportError:
    useFortran = False

_path_ = os.path.realpath(os.path.dirname(__file__))

# variable to allow printout for debugging as if debug:print 'message'
# set it to integer value above debuglevel
debug = False


def _sqcoefOriginalHP(ir, eta, gek, ak, a=0., b=0., c=0., f=0., u=0., v=0., gamk=0., seta=0., sgek=0., sak=0., scal=0.,
                      g1=0.):
    """
    CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING COEFFICIENTS
    This is only for documenting the difference to the old algorithm.

    This is the iterative part to find rescaling parameter to get G(1+)>0 (Gillian condition) if G(1+)>0

    Returns:
    ir,eta,gek,ak,a,b,c,f,u,v,gamk,seta,sgek,sak,scal,g1

    seta IS THE RESCALED VOLUME FRACTION.
    sgek IS THE RESCALED CONTACT POTENTIAL.
    sak IS THE RESCALED SCREENING CONSTANT.
    a,b,c,f,u,v ARE THE MSA COEFFICIENTS.
    g1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
    FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
    ZERO INDICATES THE COMPUTATIONAL ACCURACY.

    IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
    < 0: FAILED TO CONVERGE.

    This is equivalent to the original HP Fortran code.
    The different conditions might have saved computing time in 1981.
    For some parameter conditions the rescaling is needed but not done.

    Also for some parameter contributions the wrong root for Fwww is used.

    """
    # set to zero to get debug messages; debuglevel>10 no messages
    debuglevel = 1
    itm = 40  # original 40
    acc = 5.e-6
    if debug > debuglevel: print('-- ')
    if ak >= (1 + 8. * eta):
        # for large screening (scl is small and ak is large)
        # ix=1  SOLVE FOR LARGE K, RETURN G(1+)
        ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
            _sqfun(1, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
        if debug > debuglevel: print('large screening ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
        if ir < 0 or g1 >= 0:  # error or already a good solution is returned
            return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
        else:
            # we have to rescale the solution in the later as here g+<0
            pass
    seta = min(eta, 0.2)
    if ak >= (1 + 8. * eta) or gamk >= 0.15:
        # find a rescaled eta with g+>=0 for strong coupling or low volume fraction
        j = 0.
        f1 = 0.
        f2 = 0.
        while True:  # loop for Newton iteration to find g+=0
            j += 1
            if j > itm:
                return -1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
            if seta <= 0.0: seta = eta / j  # g+<0 -> rescale eta
            if seta > 0.6: seta = 0.35 / j  # rescaled eta>0.6 rescale to smaller value
            e1 = seta  # e1 first eta
            # ix=2  RETURN FUNCTION TO SOLVE FOR ETA(GILLAN)
            ix, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
                _sqfun(2, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
            e2 = seta * 1.01  # increase scaled eta
            ix, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
                _sqfun(2, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
            e2 = e1 - (e2 - e1) * f1 / (f2 - f1)  # new approximation for scaled eta
            seta = e2  # save for next iteration or as result
            delta = abs((e2 - e1) / e1)  # relative change
            if delta < acc: break  # if changes are small enough then break
        if debug > debuglevel: print('rescaling with %i iterations leads to scaling by %.3g' % (j, seta / eta))
        # ix=4    RETURN G(1+) FOR ETA=ETA(GILLAN).
        ix, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g11 = \
            _sqfun(4, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
        ir = j
        # ---------------end of Newton loop
        if debug > debuglevel: print('rescaled ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v, 'ak>,seta>eta ',
                                     ak >= (1 + 8. * eta), seta >= eta)
        if ak >= (1 + 8. * eta):  # in this case return anyway
            return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
        else:
            if seta >= eta:  # seta>eta indicates successful rescaling with g1 as zero
                return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1

    ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
        _sqfun(3, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=True)
    if debug > debuglevel: print('after scaling ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
    if ir >= 0:
        if g1 < 0.: ir = -3  # rescaling not successful
    return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1


def _sqcoef(ir, eta, gek, ak, a=0., b=0., c=0., f=0., u=0., v=0., gamk=0., seta=0., sgek=0., sak=0., scal=0., g1=0.):
    """
    CALCULATES RESCALED VOLUME FRACTION AND CORRESPONDING COEFFICIENTS

    This is the iterative part to find rescaling parameter to get G(1+)>0 (Gillian condition) if G(1+)>0

    Returns:
    ir,eta,gek,ak,a,b,c,f,u,v,gamk,seta,sgek,sak,scal,g1

    seta IS THE RESCALED VOLUME FRACTION.
    sgek IS THE RESCALED CONTACT POTENTIAL.
    sak IS THE RESCALED SCREENING CONSTANT.
    a,b,c,f,u,v ARE THE MSA COEFFICIENTS.
    g1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
    FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
    ZERO INDICATES THE COMPUTATIONAL ACCURACY.

    IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
    < 0: FAILED TO CONVERGE.

    This is a shorter version of sqcoef which is easier to understand and allows
    no bypassing between the conditions in original code which leads to errors for harmless parameter settings.
    The idea is the original idea (see [2]_) to calculate the MSA and to rescale if  g+<0  .


    """
    # set to zero to get debug messages; debuglevel>10 no messages
    debuglevel = 1
    itm = 80  # original 40
    acc = 5.e-6
    fix = 0.5
    if debug > debuglevel: print('-- ')
    # just try to solve
    ix, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
        _sqfun(1, ir, g1, eta, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
    if debug > debuglevel: print('first try ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v)
    if ir == -2:
        # FAILED TO CONVERGE in Newton algorith to find zero, only in classical HP solution,
        return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
    elif ir == -4:
        # no root found in first try
        return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
    elif g1 < 0:
        # we have to rescale the solution in the later as here g+<0
        pass
    elif g1 >= 0:  # already a good solution is returned
        return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1

    seta = min(eta, 0.2)
    # find a rescaled eta with g+>=0 for strong coupling or low volume fraction
    j = 0.
    f1 = 0.
    f2 = 0.
    while True:  # loop for Newton iteration to find g+=0
        j += 1
        if j > itm:
            return -1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
        if seta <= 0.0: seta = eta / j  # g+<0 -> rescale eta
        if seta > 0.6: seta = 0.35 / j  # rescaled eta>0.6 rescale to smaller value
        e1 = seta  # e1 first eta
        # ix=2  RETURN FUNCTION TO SOLVE FOR ETA(GILLAN)
        ix, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
            _sqfun(2, ir, f1, e1, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
        e2 = seta * 1.01  # increase scaled eta
        ix, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = \
            _sqfun(2, ir, f2, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
        e2 = e1 - (e2 - e1) * f1 / (f2 - f1)  # new approximation for scaled eta
        seta = e2  # save for next iteration or as result
        delta = abs((e2 - e1) / e1)  # relative change
        if delta < acc: break  # changes  are small enough then break
    if debug > debuglevel: print('rescaling with %i iterations leads to scaling by %.3g' % (j, seta / eta))
    # ix=4    RETURN G(1+) FOR ETA=ETA(GILLAN) with all parameters.
    ix, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g11 = \
        _sqfun(4, ir, g1, e2, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1)
    if (seta > 0.64) or (seta < eta):
        ir = -3  # rescaling not successful
        return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
    ir = j
    # ---------------end of Newton loop
    if debug > debuglevel: print('rescaled ', ir, g1, ak, gamk, 'abcfuv', a, b, c, f, u, v, 'ak>,seta,eta ',
                                 ak >= (fix + 8. * eta), seta, eta)
    return ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1


def _sqfun(ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1, useHP=False):
    """
    CALCULATES VARIOUS COEFFICIENTS AND FUNCTION VALUES FOR _sqcoef

    this is the NOT rescaled solution! == MSA

    Options
    ix =1: SOLVE FOR LARGE K, RETURN G(1+).
        2: RETURN FUNCTION TO SOLVE FOR ETA(GILLAN).
        3: ASSUME NEAR GILLAN, SOLVE, RETURN G(1+).
        4: RETURN G(1+) FOR ETA=ETA(GILLAN).

    SETA IS THE RESCALED VOLUME FRACTION.
    SGEK IS THE RESCALED CONTACT POTENTIAL.
    SAK IS THE RESCALED SCREENING CONSTANT.
    A,B,C,F,U,V ARE THE MSA COEFFICIENTS.
    G1=G(1+) IS THE CONTACT VALUE OF G(R/SIG);
    FOR THE GILLAN CONDITION, THE DIFFERENCE FROM
    ZERO INDICATES THE COMPUTATIONAL ACCURACY.

    IR > 0: NORMAL EXIT, IR IS THE NUMBER OF ITERATIONS.
     < 0: FAILED TO CONVERGE.

    The root of the quartic F = w4*fa**4+w3*fa**3+w2*fa**2+w1*fa+w0 needs to be found.
    in this code we have two choices in the source code.
    One for documentation and the second as the correct solution:

     1. to use the original HayterPenfold algorithm from the Fortran code as also e.g.used in SASVIEW and SASFIT
        with an estimate for the root of Fwww which is refined by Newton algorithm
        which results under specific conditions in the wrong root
        test with e.g.
        for scl in np.r_[1:10]:p.plot(js.sf.RMSA(q=x,R=3.1,scl=scl, gamma=1.1, eta=0.5),legend='%.3g' %scl)
        the correct branch can be verified by using the Percus-Yevick as limit

     2. original idea from Hayter paper [1]_ as *default  solution*
        find all roots (by numpy.roots) and take the physical root with g(r/diameter<1)=0
        in this code there is no difference between ix=1 and 3
        with structurefactor.debug=11 you get output for g(r) and the zeros of Fwww (see source code)



    """
    # set to zero to get debug messages; debuglevel>10 no messages
    debuglevel = 1
    acc = 1e-6  # stop criterion for Newton
    itm = 40  # max number of iterations
    # needed parameters with changes for iteration
    eta = evar  # volume fraction
    scal = (reta / evar) ** (1 / 3.)  # scaling factor
    sak = rak / scal  # scaled dimensionless screening constant
    val = rgek if abs(rgek) > 1e-9 else 1e-9  # prevent zero and just take small value
    sgek = val * scal * math.exp(rak - sak)  # scaled contact potential
    gek = sgek
    ak = sak
    # -----------------reproduce original fortran code
    # using these variables is important to reduce the dependency on accuracy of float64
    # and maybe it makes it a bit faster
    eta2 = eta ** 2
    eta3 = eta2 * eta
    e12 = 12. * eta
    e24 = e12 + e12
    ak2 = ak ** 2
    ak1 = 1 + ak
    dak2 = 1.0 / ak2
    dak4 = dak2 * dak2
    d = 1 - eta
    d2 = d * d
    dak = d / ak
    dd2 = 1.0 / d2
    dd4 = dd2 * dd2
    dd45 = dd4 * 2.0e-1
    eta3d = 3. * eta
    eta6d = eta3d + eta3d
    eta32 = eta3 + eta3
    eta2d = eta + 2.0
    eta2d2 = eta2d * eta2d
    eta21 = 2.0 * eta + 1.0
    eta22 = eta21 * eta21

    # all coefficients from appendix in the paper [1]
    al1 = -eta21 * dak
    al2 = (14 * eta2 - 4 * eta - 1) * dak2
    al3 = 36 * eta2 * dak4

    b1 = -(eta2 + 7. * eta + 1.) * dak
    b2 = 9. * eta * (eta2 + 4. * eta - 2.) * dak2
    b3 = 12. * eta * (2 * eta2 + 8. * eta - 1.) * dak4

    n1 = -(eta3 + 3. * eta2 + 45. * eta + 5.) * dak
    n2 = (eta32 + 3. * eta2 + 42. * eta - 20.) * dak2
    n3 = (eta32 + 30. * eta - 5.) * dak4
    n4 = n1 + 24. * eta * ak * n3
    n5 = eta6d * (n2 + 4. * n3)

    f1 = eta6d / ak
    f2 = d - 12. * eta * dak2

    ff1 = f1 * f1
    ff2 = f2 * f2
    ff = ff1 + ff2
    f1f2 = 2. * f1 * f2

    t1 = (eta + 5.) / (5. * ak)
    t2 = eta2d * dak2
    t3 = -12. * eta * gek * (t1 + t2)
    t4 = eta3d * ak2 * (t1 * t1 - t2 * t2)
    t5 = eta3d * (eta + 8.) * 0.1 - 2. * eta22 * dak2
    # ------------
    a1 = (e24 * gek * (al1 + al2 + ak1 * al3) - eta22) * dd4
    bb1 = (1.5 * eta * eta2d2 - 12. * eta * gek * (b1 + b2 + ak1 * b3)) * dd4
    v1 = (eta21 * (eta2 - 2. * eta + 10.) * 0.25 - gek * (n4 + n5)) * dd45
    p1 = (gek * (ff1 + ff2 - f1f2) - 0.5 * eta2d) * dd2
    T1 = t3 + t4 * a1 + t5 * bb1

    if (sak > 15) and (ix == 1):
        if debug > debuglevel: print('(sak>15) and (ix==1)', ak)
        # this corresponds to ibig=1 in original Hayter-Penfold code for large screening
        # large screening means the screening length 1/kappa is small compared to 2R and we are in the hard sphere limit
        # if ak is big -> cosh = sinh and a lot simplifies in asymptotic solution
        # but at same time cosh(ak) may exceeds numerical limits for really large ak
        a3 = e24 * (eta22 * dak2 - 0.5 * d2 - al3) * dd4
        bb3 = e12 * (0.5 * d2 * eta2d - eta3d * eta2d2 * dak2 + b3) * dd4
        v3 = ((eta3 - 6. * eta2 + 5.) * d - eta6d * (2. * eta3 - 3. * eta2 + 18. * eta + 10.) * dak2 + e24 * n3) * dd45
        p3 = (ff1 - ff2) * dd2
        T3 = t4 * a3 + t5 * bb3 + e12 * t2 - 0.4 * eta * (eta + 10.) - 1.
        M6 = T3 * a3 - e12 * v3 * v3
        M5 = T1 * a3 + a1 * T3 - e24 * v1 * v3
        M4 = T1 * a1 - e12 * v1 * v1
        L6 = e12 * p3 * p3
        L5 = e24 * p1 * p3 - 2. * bb3 - ak2
        L4 = e12 * p1 * p1 - 2. * bb1
        W56 = M5 * L6 - L5 * L6
        W46 = M4 * L6 - L4 * M6
        fa = -W46 / W56
        ca = -fa
        f = fa
        c = ca
        b = bb1 + bb3 * fa
        a = a1 + a3 * fa
        v = v1 + v3 * fa
        g1 = -(p1 + p3 * fa)
        fval = g1 if g1 > 1e-3 else 0.
        seta = evar
        # g24 = e24*gek*math.exp(ak)            # prevent math range error in exp for large ak (-> small scl)
        # u = (ak2*ak*ca-g24)/(ak2*g24)         # so we rewrite this to have exp(-ak)
        u = ak * ca / e24 / gek * math.exp(-ak) - 1 / ak2  # same as above two lines but this prevents math range error
        return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1

    # small sak for the remaining
    sk = math.sinh(ak)
    ck = math.cosh(ak)
    ckma = ck - 1. - ak * sk
    skma = sk - ak * ck
    a2 = e24 * (al3 * skma + al2 * sk - al1 * ck) * dd4
    a3 = e24 * (eta22 * dak2 - 0.5 * d2 + al3 * ckma - al1 * sk + al2 * ck) * dd4

    bb2 = e12 * (-b3 * skma - b2 * sk + b1 * ck) * dd4
    bb3 = e12 * (0.5 * d2 * eta2d - eta3d * eta2d2 * dak2 - b3 * ckma + b1 * sk - b2 * ck) * dd4

    v2 = (n4 * ck - n5 * sk) * dd45
    v3 = ((eta3 - 6. * eta2 + 5.) * d - eta6d * (
            2. * eta3 - 3. * eta2 + 18. * eta + 10.) * dak2 + e24 * n3 + n4 * sk - n5 * ck) * dd45
    # define...
    p2 = (ff * sk + f1f2 * ck) * dd2
    p3 = (ff * ck + f1f2 * sk + ff1 - ff2) * dd2

    T2 = t4 * a2 + t5 * bb2 + e12 * (t1 * ck - t2 * sk)
    T3 = t4 * a3 + t5 * bb3 + e12 * (t1 * sk - t2 * (ck - 1.)) - 0.4 * eta * (eta + 10.) - 1.

    M1 = T2 * a2 - e12 * v2 * v2
    M2 = T1 * a2 + T2 * a1 - e24 * v1 * v2
    M3 = T2 * a3 + T3 * a2 - e24 * v2 * v3
    M4 = T1 * a1 - e12 * v1 * v1
    M5 = T1 * a3 + T3 * a1 - e24 * v1 * v3
    M6 = T3 * a3 - e12 * v3 * v3

    # ix is defined from the _sqcoef
    #  large k or close to GILLAN CONDITION g1==0 as explained in [1]
    if ix == 1 or ix == 3:
        # YES - G(X=1+) = 0
        # COEFFICIENTS AND FUNCTION VALUE
        L1 = e12 * p2 * p2
        L2 = e24 * p1 * p2 - 2. * bb2
        L3 = e24 * p2 * p3
        L4 = e12 * p1 * p1 - 2. * bb1
        L5 = e24 * p1 * p3 - 2. * bb3 - ak2
        L6 = e12 * p3 * p3

        W16 = M1 * L6 - L1 * M6
        W15 = M1 * L5 - L1 * M5
        W14 = M1 * L4 - L1 * M4
        W13 = M1 * L3 - L1 * M3
        W12 = M1 * L2 - L1 * M2
        W26 = M2 * L6 - L2 * M6
        W25 = M2 * L5 - L2 * M5
        W24 = M2 * L4 - L2 * M4
        W36 = M3 * L6 - L3 * M6
        W35 = M3 * L5 - L3 * M5
        W34 = M3 * L4 - L3 * M4
        W32 = M3 * L2 - L3 * M2
        W46 = M4 * L6 - L4 * M6
        W56 = M5 * L6 - L5 * M6

        # QUARTIC COEFFICIENTS W(I)
        #  these are used in
        # fun = w0+(w1+(w2+(w3+w4*fa)*fa)*fa)*fa  =w4*fa**4+w3*fa**3+w2*fa**2+w1*fa+w0
        w4 = W16 * W16 - W13 * W36
        w3 = 2. * W16 * W15 - W13 * (W35 + W26) - W12 * W36
        w2 = W15 * W15 + 2. * W16 * W14 - W13 * (W34 + W25) - W12 * (W35 + W26)
        w1 = 2. * W15 * W14 - W13 * W24 - W12 * (W34 + W25)
        w0 = W14 * W14 - W12 * W24
        # now find root of fun
        if useHP:
            # this documents the original HayterPenfold algorithm as found in original fortran code
            # to find the correct root an estimate is used and refined by Newton method
            # fails e.g.for R=3.1 gam=1.1 eta=0.5 when scl 6.1999 -> 6,2 as sak changes over 1
            # or scl=1.37382379588 R=2.5 gam=5.1 eta=0.6 as the found root results in g(r<1)>0
            # reason: in Newton refining an arbitrary root is found
            if ix == 1:  # large screening
                # LARGE K estimate for the zero of Fwww
                fap = (W14 - W34 - W46) / (W12 - W15 + W35 - W26 + W56 - W32)
            else:  # ix=3  no large screening
                # ASSUME NOT TOO FAR FROM GILLAN CONDITION.
                # IF BOTH RGEK AND RAK ARE SMALL, USE P-W ESTIMATE.of the zero of Fwww
                g1 = 0.5 * eta2d * dd2 * math.exp(-gek)
                pg = p1 + g1
                ca = ak2 * pg + 2. * (bb3 * pg - bb1 * p3) + e12 * g1 * g1 * p3
                ca = -ca / (ak2 * p2 + 2. * (bb3 * p2 - bb2 * p3))
                fap2 = -(pg + p2 * ca) / p3
                if (gek > 0) and (sgek <= 2.0) and (sak <= 1.0):
                    # gek>0 as this is only for positive contact potentials
                    # this was introduced in the SASFIT conversion (C code)
                    e24g = e24 * gek * math.exp(ak)
                    pwk = math.sqrt(e24g)
                    qpw = (1. - math.sqrt(1. + 2. * d2 * d * pwk / eta22)) * eta21 / d
                    g1 = -qpw * qpw / e24 + 0.5 * eta2d * dd2
                pg = p1 + g1
                ca = ak2 * pg + 2. * (bb3 * pg - bb1 * p3) + e12 * g1 * g1 * p3
                ca = -ca / (ak2 * p2 + 2. * (bb3 * p2 - bb2 * p3))
                fap = -(pg + p2 * ca) / p3
                # print('PWEstimate',fap,fap2,( sgek<=2.0) and ( sak<=1.0))
            # now find a better estimate of the zero by Newton iteration
            # RB: this algorithm finds different roots dependent on sgek and sak
            # the roots are somehow arbitrary in the 4 possible ones,
            # the main time it is one of the two centered which make no
            # big jumps but the outer ones make large jumps in the result
            ii = 0
            while True:
                ii += 1
                if ii > itm:  # FAILED TO CONVERGE IN ITM ITERATIONS
                    ir = -2
                    return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1
                fa = fap  # estimated zero pole of fun
                fun = w0 + (w1 + (w2 + (w3 + w4 * fa) * fa) * fa) * fa  # function to minimize
                fund = w1 + (2. * w2 + (3. * w3 + 4. * w4 * fa) * fa) * fa  # derivative of fun
                fap = fa - fun / fund  # new value as next estimate
                if fa == 0: continue  # fa is 0 if gek is zero
                delta = abs((fap - fa) / fa)  # difference
                if delta < acc: break
            # found one and use this zero
            ir = ir + ii
            fa = fap
            ca = -(W16 * fa * fa + W15 * fa + W14) / (W13 * fa + W12)
            g1 = -(p1 + p2 * ca + p3 * fa)
        else:
            # original idea from Hayter paper [1]_
            # take all roots and use the physical root with g(r/diameter<1)=0
            # in this code there is no difference between ix=1 or 3
            # The algorithm relies on computing the eigenvalues of the companion matrix
            x0 = np.roots(
                [w4, w3, w2, w1, w0])  # 114µs      slower than direct calculation, but this is not the bottle neck
            if np.all((x0.imag / x0.real) < 1e-3):
                # if the imaginary part of complex roots is small use also these
                # in some cases this is the correct solution in gr
                fa = x0.real
            else:
                fa = x0[np.isreal(x0)].real  # 6.5µs
            fa.sort()  # we have up to 4 real roots and each of the following has up to 4 values
            ca = -(W16 * fa * fa + W15 * fa + W14) / (W13 * fa + W12)
            g1 = -(p1 + p2 * ca + p3 * fa)
            b = bb1 + bb2 * ca + bb3 * fa
            a = a1 + a2 * ca + a3 * fa
            # choose the correct root by calculating g(r) (sin transform) and using the one with g(r<1)=0
            # here i choose explicitly 1-delta
            delta = 0.05
            nn = (2 ** 13 + 0)  # n number of points to get reliable fft
            dqr2 = np.r_[0, delta:nn * delta:delta]  # points to calculate S(dqr2)
            kk = 1 // delta  # index of last point smaller 1
            # calc the value of g(x) with x=1-delta=kk*delta  in equ.12 of[1]_
            gr1 = [delta * np.sum(
                (_SQMSA(dqr2, scal, eta, ak, gek, aa, bb, cca, ffa) - 1) * dqr2 * np.sin(kk * delta * dqr2))
                   for aa, bb, cca, ffa in zip(a, b, ca, fa)]
            grval = [1 + ggr / (12 * np.pi * eta * kk * delta) for ggr in gr1]
            if len(fa) == 0 or np.min(grval) > 0.1:
                # no real root found or not grval close to zero
                ir = -4
                return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, \
                       g1.max() if np.size(g1) else g1
            # chose the one with grval close to zero
            chooseone = np.argmin(np.abs(grval))
            if debug > debuglevel:
                # this writes the calculated g(r) to a file for checking of g(r)
                rrr = 2 * np.pi * np.fft.rfftfreq(len(dqr2), d=delta)  # points in r domain from rfft r/diameter
                # doing sin transform with rfft results in minus in front of imag part
                # compared to equation 12 in HP paper [1]
                # delta* is to get correct integral
                # gr=[delta*np.fft.rfft((_SQMSA(dqr2,scal,eta,ak,gek,aa,bb,cca,ffa)-1)*dqr2).imag
                #                                            for aa,bb,cca,ffa in zip(a,b,ca,fa)]
                gr = [delta * scipy.fft.dst(_SQMSA(dqr2, scal, eta, ak, gek, aa, bb, cca, ffa) - 1) * dqr2
                      for aa, bb, cca, ffa in zip(a, b, ca, fa)]
                # [1:] to avoid rrr=zero
                gr = [1 - ggr[1:] / (12 * np.pi * eta * rrr[1:]) for ggr in gr]
                # choose one with minimum mean value g(r) for rrr<1 which should be zero
                # above we use only one value and choose smallest grval
                # here we choose the smallest mean value which is often not correct but here it is only for demo
                grval = [grr[rrr[1:] < 0.9][1:].mean() for grr in gr]
                print('grval  ', grval)
                temp = dL()
                for i, grr in enumerate(gr):
                    temp.append(np.c_[rrr[1:], grr].T)
                    temp[-1].choosen = chooseone
                    temp[-1].zero = fa[i]
                    temp[-1].g1 = g1[i]
                    temp[-1].legend = 'g(r<1)= %.3g' % (grval[i])
                temp.savetxt('testgr.dat')
                print('zeros,g1,choosen zero', fa, g1, chooseone)
            fa = fa[chooseone]
            ca = ca[chooseone]
            g1 = -(p1 + p2 * ca + p3 * fa)
            # end searching the root- recalculating final result------------------------
        fval = (g1 if abs(g1) > 1e-3 else 0.)
        seta = evar
        f = fa
        c = ca
        b = bb1 + bb2 * ca + bb3 * fa
        a = a1 + a2 * ca + a3 * fa
        v = (v1 + v2 * ca + v3 * fa) / a

    else:
        # -> ix==2 or ix==4
        ca = ak2 * p1 + 2. * (bb3 * p1 - bb1 * p3)
        ca = -ca / (ak2 * p2 + 2.0 * (bb3 * p2 - bb2 * p3))
        fa = -(p1 + p2 * ca) / p3
        # fval will contain g1 for Newton iteration ix=2,4
        if ix == 2:    fval = M1 * ca * ca + (M2 + M3 * fa) * ca + M4 + M5 * fa + M6 * fa * fa
        if ix == 4:    fval = -(p1 + p2 * ca + p3 * fa)
        f = fa
        c = ca
        b = bb1 + bb2 * ca + bb3 * fa
        a = a1 + a2 * ca + a3 * fa
        v = (v1 + v2 * ca + v3 * fa) / a
    g24 = e24 * gek * math.exp(ak)
    u = (ak2 * ak * ca - g24) / (ak2 * g24)
    return ix, ir, fval, evar, reta, rgek, rak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1


def _SQMSA(qR2, scal, eta, ak, gek, a, b, c, f):
    """
    equation 14 Hayter-Penfold paper [1] in sfRMSA to calculate the final structure factor
    """
    K = np.where(qR2 == 0, 1e-15, qR2 / scal)  # catch zero
    if ak > 25:  # c==-f and
        # avoid to large ak to prevent math range error
        # ak>15 has f=-c from sqfun so the sinh and cosh terms cancel for large ak
        sinhsk = 0.
        coshsk = 0.
    else:
        sinhsk = math.sinh(ak)
        coshsk = math.cosh(ak)
    sink = np.sin(K)
    cosk = np.cos(K)
    K2 = K * K
    K3 = K2 * K
    K4 = K3 * K
    KK2ak2 = 1 / K / (K2 + ak ** 2)
    a_K = a * (sink - K * cosk) / K3 \
          + b * ((2. / K ** 2 - 1) * K * cosk + 2 * sink - 2. / K) / K3 \
          + a * eta * (24. / K3 + 4. * (1 - 6. / K2) * sink - (1 - 12. / K2 + 24. / K4) * K * cosk) / 2. / K3 \
          + c * (ak * coshsk * sink - K * sinhsk * cosk) * KK2ak2 \
          + f * (ak * sinhsk * sink - K * (coshsk * cosk - 1)) * KK2ak2 \
          + f * (cosk - 1) / K2 \
          - gek * (ak * sink + K * cosk) * KK2ak2
    msa = 1 / (1 - 24. * eta * a_K)
    MSA = np.where(qR2 == 0, -1 / a, msa)  # -1/a is correct solution for qR2==zero
    return MSA


[docs] def RMSA(q, R, scl, gamma, molarity=None, eta=None, useHP=False): r""" Structure factor for a screened coulomb interaction (single Yukawa) in rescaled mean spherical approximation (RMSA). Structure factor according to Hayter-Penfold [1]_ [2]_ . Consider a scattering system consisting of macro ions, counter ions and solvent. Here an improved algorithm [3]_ is used based on the original idea described in [1]_ (see Notes). Parameters ---------- q : array; N dim Scattering vector in units 1/nm. R : float Radius of the object :math:`\sigma` in units nm. molarity : float Number density n in units mol/l. Overrides eta, if both given. scl : float>0 Screening length, Debye length or Debye–Hückel screening length :math:`\lambda=1/\kappa` in units nm. Negative values evaluate to scl=0. gamma : float Contact potential :math:`\gamma` in units kT. - :math:`\gamma=Z_m/(\pi \epsilon \epsilon_0 R (2+\kappa R))` - :math:`Z_m = Z^*` effective surface charge - :math:`\epsilon_0,\epsilon` free permittivity and dielectric constant - :math:`\kappa=1/\lambda` inverse screening length eta : float Volume fraction as :math:`eta=\Phi=4/3piR^3n` with number density n. useHP : True, default False To use the original Hayter/Penfold algorithm. This gives wrong results for some parameter conditions. It should ONLY be used for testing. See example examples/test_newRMSAAlgorithm.py for a direct comparison. Returns ------- dataArray - .volumeFraction = eta - .rescaledVolumeFraction - .screeningLength - .gamma=gamma - .contactpotential - .S0 structure factor at q=0 - .scalingfactor factor for rescaling to get g+1=0; if =1 nothing was scaled and it is MSA Notes ----- The repulsive potential between two identical spherical macroions of diameter :math:`\sigma` is (DLVO model) in dimensionless form .. math:: \frac{U(x)}{k_BT} &= \gamma \frac{e^{-kx}}{x} \; &for \; x>1 \\ &= \infty &for \; x<1 - :math:`x = r/\sigma, k=\kappa\sigma, K=Q\sigma` dimesionless parameters - :math:`k_BT` thermal energy - :math:`\gamma e^{-k} = \frac{\pi \epsilon_0 \epsilon \sigma }{k_BT} \psi^2_0` contact potential in kT units - Inverse screening length :math:`\kappa` with :math:`\kappa^2=4\pi \lambda_B \sum_i n_j z_j` with Bjerrum length :math:`\lambda_B = \frac{e^2}{4\pi \varepsilon_0 \varepsilon_r \ k_{B} T}` using :math:`e` elementary charge, :math:`\varepsilon_r` relative dielectric constant of the medium, :math:`\varepsilon_0` is the vacuum permittivity, :math:`n_i` number density of ion i with charge z [unit e]. For water at room temperature :math:`T \approx 293 K` :math:`\varepsilon_r \approx 80`, so that :math:`\lambda_B \approx 0.71 nm` and :math:`\lambda[nm] = \frac{0.304}{I[M]}` . - From [1]_: This potential is valid for colloid systems provided k < 6. There is no theoretical restriction on k in what follows, however, and for general studies of one component plasmas any value may be used. - In the limit :math:`\gamma \rightarrow 0` or :math:`k\rightarrow\infty` the Percus-Yevick hard sphere is reached. - Why is is named **rescaled MSA**: From [1]_: Note that in general, however, the MSA fails at low density; letting :math:`n\rightarrow0` yields :math:`g(x)\rightarrow 1-lU(x)/kT` for x> 1. Since U(x) is generally larger than thermal energies for small interparticle separations, g(x) will generally be negative (and hence unphysical) near the particle at very low densities. This does not present a problem for many colloid studies of current interest, where volume fractions are generally greater than 1%. To solve this the radius is rescaled to get :math:`g(\sigma +)=0` according to [2]: ...by increasing the particle diameter from its physical value `a` to an effective hard core value `a'`, while maintaining the Coulomb coupling constant. ... If :math:`g(\sigma +)>=0` no rescaling is done. Improved algorithm (see [3]_ fig. 6) The Python code is deduced from the original Hayter-Penfold Fortran code (1981, ILL Grenoble). This is also used in other common SAS programs as SASfit or SASview (translated to C). The original algorithm determines the root of a quartic F(w1,w2,w3,w4) by an estimate (named PW estimate), refining it by a Newton algorithm. As the PW estimate is sometimes not good enough this results in an arbitrary root of the quartic in the Newton algorithm. The solution therefore jumps between different possibilities by small changes of the parameters. We use here the original idea from [1]_ to calculate G(r<0) for all four roots of F(w1,w2,w3,w4) and use the physical solution with G(r<R)=0. See examples/test_newRMSAAlgorithm.py for a direct comparison or [3]_ fig. 6. Validity The calculation of charge at the surface or screening length from a solute ion concentration is explicitly dedicate to the user. The Debye-Hückel theory for a macro ion in screened solution is a far field theory as a linearization of the Poisson-Boltzmann (PB) theory and from limited validity (far field or low charge -> linearization). Things like reverting charge layer, ion condensation at the surface, pH changes at the surface or other things might appear. Before calculating please take these things into account. Close to the surface the PB has to be solved. The DH theory can still be used if the charge is thus an effective charge named Z*, which might be different from the real surface charge. See Ref [4]_ for details. Examples -------- Effect of volume fraction, surface potential and screening length onto RMSA structure factor :: import jscatter as js R = 6 eta0 = 0.2 gamma0 = 30 # surface potential scl0 = 10 q = js.loglist(0.01, 5, 200) p = js.grace(1,1.5) p.multi(3,1) for eta in [0.01,0.05,0.1,0.2,0.3,0.4]: rmsa = js.sf.RMSA(q, R, scl=scl0, gamma=gamma0, eta=eta) p[0].plot(rmsa, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.1f}') for scl in [0.1,1,5,10,20]: rmsa = js.sf.RMSA(q, R, scl=scl, gamma=gamma0, eta=eta0) p[1].plot(rmsa, symbol=0, line=[1, 3, -1], legend=f'scl ={scl:.1f}') for gamma in [1,10,20,40,100]: rmsa = js.sf.RMSA(q, R, scl=scl0, gamma=gamma, eta=eta0) p[2].plot(rmsa, symbol=0, line=[1, 3, -1], legend=r'\xG\f{} =$gamma') p[0].yaxis(min=0.0, max=2.5, label='S(Q)', charsize=1.5) p[0].legend(x=1.2, y=2.4) p[0].xaxis(min=0, max=1.5,label='') p[1].yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5) p[1].legend(x=1.1, y=2.) p[1].xaxis(min=0, max=1.5, label=r'') p[2].yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5) p[2].legend(x=1.1, y=2.2) p[2].xaxis(min=0, max=1.5, label=r'Q / nm\S-1') p[0].title('RMSA structure factor') p[0].subtitle(f'R={R:.1f} gamma={gamma0:.1f} eta={eta0:.2f} scl={scl0:.2f}') #p.save(js.examples.imagepath+'/rmsa.jpg',size=[600,900]) .. image:: ../../examples/images/rmsa.jpg :width: 50 % :align: center :alt: rmsa References ---------- .. [1] J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981). .. [2] J.-P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (2006). .. [3] Jscatter, a program for evaluation and analysis of experimental data R.Biehl, PLOS ONE, 14(6), e0218789, 2019, https://doi.org/10.1371/journal.pone.0218789 .. [4] L. Belloni, J. Phys. Condens. Matter 12, R549 (2000). """ """ Original Doc of the Hayter Penfold Fortran routine:: seta is the rescaled volume fraction. sgek is the rescaled contact potential. sak is the rescaled screening constant. a,b,c,f,u,v are the msa coefficients. g1=g(1+) is the contact value of g(r/sig); for the Gillan condition, the difference from zero indicates the computational accuracy. ROUTINE TO CALCULATE S(Q*SIG) FOR A SCREENED COULOMB POTENTIAL BETWEEN FINITE PARTICLES OF DIAMETER 'SIG' AT ANY VOLUME FRACTION. THIS ROUTINE IS MUCH MORE POWER- FUL THAN "SQHP" AND SHOULD BE USED TO REPLACE THE LATTER IN EXISTING PROGRAMS. NOTE THAT THE COMMON AREA IS CHANGED; IN PARTICULAR, THE POTENTIAL IS PASSED DIRECTLY AS 'GEK' = GAMMA*EXP(-K) IN THE PRESENT ROUTINE. JOHN B.HAYTER (I.L.L.) 19-AUG-81 CALLING SEQUENCE: CALL SQHPA(QQ,SQ,NPT,IERR) QQ: ARRAY OF DIMENSION NPT CONTAINING THE VALUES OF Q*SIG AT WHICH S(Q*SIG) WILL BE CALCULATED. SQ: ARRAY OF DIMENSION NPT INTO WHICH VALUES OF S(Q*SIG) WILL BE RETURNED. NPT: NUMBER OF VALUES OF Q*SIG. IERR > 0: NORMAL EXIT; IERR=NUMBER OF ITERATIONS. -1: NEWTON ITERATION NON-CONVERGENT IN "SQCOEF" -2: NEWTON ITERATION NON-CONVERGENT IN "SQFUN". -3: CANNOT RESCALE TO G(1+) > 0. ON ENTRY: ETA: VOLUME FRACTION GEK: THE CONTACT POTENTIAL GAMMA*EXP(-K) AK: THE DIMENSIONLESS SCREENING CONSTANT AK = KAPPA*SIG WHERE KAPPA IS THE INVERSE SCREENING LENGTH AND SIG IS THE PARTICLE DIAMETER. ON EXIT: GAMK IS THE COUPLING: 2*GAMMA*S*EXP(-K/S), S=ETA**(1/3). SETA, SGEK AND SAK ARE THE RESCALED INPUT PARAMETERS. SCAL IS THE RESCALING FACTOR: (ETA/SETA)**(1/3). G1=G(1+), THE CONTACT VALUE OF G(R/SIG). A,B,C,F,U,V ARE THE CONSTANTS APPEARING IN THE ANALYTIC SOLUTION OF THE MSA (HAYTER-PENFOLD; MOL.PHYS. 42: 109 (1981)) NOTES: (A) AFTER THE FIRST CALL TO SQHPA, S(Q*SIG) MAY BE EVALUATED AT OTHER Q*SIG VALUES BY REDEFINING THE ARRAY QQ AND CALLING "SQHCAL" DIRECTLY FROM THE MAIN PROGRAM. (B) THE RESULTING S(Q*SIG) MAY BE TRANSFORMED TO G(R/SIG) USING THE ROUTINE "TROGS". (C) NO ERROR CHECKING OF INPUT PARAMETERS IS PERFORMED; IT IS THE RESPONSIBILITY OF THE CALLING PROGRAM TO VERIFY VALIDITY. SUBROUTINES REQUIRED BY SQHPA: (1) SQCOEF RESCALES THE PROBLEM AND CALCULATES THE APPROPRIATE COEFFICIENTS FOR "SQHCAL". (2) SQFUN CALCULATES VARIOUS VALUES FOR "SQCOEF". (3) SQHCAL CALCULATES H-P S(Q*SIG) GIVEN A,B,C,F. """ R = abs(R) error = {-1: 'NEWTON ITERATION NON-CONVERGENT IN _sqcoef', -2: 'NEWTON ITERATION NON-CONVERGENT IN _sqfun', -3: 'CANNOT RESCALE TO G(1+) > 0.', -4: 'no physical root with G(r<1) < 0.1 in _sqfun found'} # added for new algorithm # get volume fraction eta from number density and radius R if isinstance(molarity, numbers.Number): molarity = abs(molarity) numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3 eta = 4 / 3. * np.pi * R ** 3 * numdens elif isinstance(eta, numbers.Number): numdens = eta / (4 / 3. * np.pi * R ** 3) molarity = numdens / (constants.N_A * 1e-24) else: raise Exception('one of molarity/eta needs to be given.') # dimensionless screening constant ak if eta <= 0.: eta = 1e-10 # if eta>1: raise Exception('eta needs to be smaller 1.') if scl <= 0: ak = 1e20 else: ak = 2 * R / scl # to large ak make math error in exp , anyway then we have a hard sphere if ak > 200: ak = 200 # the contact potential in kT gek = gamma * math.exp(-ak) # coupling gamk = 2. * eta ** (1 / 3.) * gek * math.exp(ak - ak / eta ** (1 / 3.)) # ----------do the rescaling in _sqcoef-------------------- # _sqcoef does the rescaling to satisfy the Gillian condition with g1==0 according to [2] # therein _sqfun calculates the NOT rescaled solution described in [1] if useHP: ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = _sqcoefOriginalHP(ir=0, eta=eta, gek=gek, ak=ak, gamk=gamk) else: ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1 = _sqcoef(ir=0, eta=eta, gek=gek, ak=ak, gamk=gamk) # catch error if ir < 0: print(ir, error[ir], 'g+ =', g1, 'ak=', ak) return ir # dimensionless q scale q = np.atleast_1d(q) qR2 = 2 * R * q # calc values by _SQMSA sq = _SQMSA(qR2, scal, seta, sak, sgek, a, b, c, f) result = dA(np.r_[[q, sq]]) result.setColumnIndex(iey=None) # add important parameters result.volumeFraction = eta result.rescaledVolumeFraction = seta result.molarity = molarity result.screeningLength = scl result.gamma = gamma result.contactpotential = gek result.S0 = -1 / a result.scalingfactor = scal result.gplus1 = [g1, ir] result.modelname = inspect.currentframe().f_code.co_name result._coefficients = {key: value for (value, key) in zip([ir, eta, gek, ak, a, b, c, f, u, v, gamk, seta, sgek, sak, scal, g1], ['ir', 'eta', 'gek', 'ak', 'a', 'b', 'c', 'f', 'u', 'v', 'gamk', 'seta', 'sgek', 'sak', 'scal', 'g1'])} return result
[docs] def sq2gr(Sq, R, interpolatefactor=2): r""" Radial distribution function g(r) from structure factor S(Q). The result strongly depends on quality of S(Q) (number of data points, Q range, smoothness). Read [2]_ for details of this inversion problem and why it may fail. After a fit of S(Q) to exp. data a simulated S(Q) with extended Q range may be used to get g(r). Parameters ---------- Sq : dataArray Structure factor to transform - .X wavevector in units as [Q]=1/nm - .Y structure factor - **Advice** : Use more than :math:`2^{10}` points and :math:`Q_{max}R>` for accurate results. - Sq is internally interpolated by a cubic spline to get equidistant points. R : float Estimate for the radius of the particles. Used for requirement :math:`mean(g(R/2<r<R 3/4)) = 0` interpolatefactor : int Number of additional points between Sq points to interpolate. 2 doubles the existing points. Returns ------- g(r) : dataArray .n0 approximated from :math:`2\pi^2 n_0=\int_0^{Q_{max}} [S(Q) -1]Q^2 dQ` Notes ----- One finds that ([1]_ equ. 7) .. math:: g(r)-1=(2\pi^2 n_0 r)^{-1} \int_0^\infty [S(Q) -1]Qsin(qr)dQ and ([1]_ equ. 6) .. math:: S(q)-1 = (4\pi^2 n_0 / q) \int_0^\infty [g(r) -1]rsin(qr)dr with defining :math:`n_0` and :math:`S(0)` .. math:: 2\pi^2 n_0=\int_0^\infty [S(Q) -1]Q^2 dQ .. math:: S(0) = 1 + 4\pi^2 n_0 \int_V [g(r) -1] d\vec{r} As we have only a limited Q range (:math:`0 < Q < \infty` ), limited accuracy and number of Q values we require that :math:`mean(g(R/2<r<R3/4))=0`. Examples -------- The example shows that a Percus-Yevick like hard sphere structure factor (RMSA with small gamma) has a high probability that the cores are close to 2R. This is reduced if a reasonable repulsion is present. :: import jscatter as js import numpy as np p=js.grace() p.multi(2,1) q=np.r_[0.001:30:1j*2**10] p[0].clear();p[1].clear() R=2.5 eta=0.3;scl=5 n=eta/(4/3.*np.pi*R**3) # unit 1/nm**3 sf=js.sf.RMSA(q=q,R=R,scl=scl, gamma=50, eta=eta) gr=js.sf.sq2gr(sf,R,interpolatefactor=1) # same with Qmax=10 sfcut=js.sf.RMSA(js.loglist(0.01,10,2**10),R=R,scl=scl, gamma=50, eta=eta) grcut=js.sf.sq2gr(sfcut,R,interpolatefactor=5) p[0].plot(sf.X*2*R,sf.Y,le=r'\xG=50') p[1].plot(gr.X/2/R,gr[1],le=r'\xG=50') p[1].plot(grcut.X/2/R,grcut[1],le=r'\xG=50 \f{}Q\smax\N=10') # a small gamma like a hard sphere potential sfh=js.sf.RMSA(q=q,R=R,scl=scl, gamma=0.01, eta=eta) grh=js.sf.sq2gr(sfh,R,interpolatefactor=1) p[0].plot(sfh.X*2*R,sfh.Y,le=r'\xG=0.01') p[1].plot(grh.X/2/R,grh[1],le=r'\xG=0.01') p[0].xaxis(max=20,label='2RQ') p[1].xaxis(max=4*R,label='r/(2R)') p[0].yaxis(max=2,min=0,label='S(Q)') p[1].yaxis(max=2.5,min=0,label='g(r)') p[0].legend(x=10,y=1.8) p[1].legend(x=4,y=2.2) p[0].title('Comparison RMSA') p[0].subtitle('R=%.2g, eta=%.2g, scl=%.2g' %(R,eta,scl)) #p.save(js.examples.imagepath+'/sq2gr.jpg') .. image:: ../../examples/images/sq2gr.jpg :align: center :height: 300px :alt: sq2gr References ---------- .. [1] Yarnell, J. L., Katz, M. J., Wenzel, R. G., & Koenig, S. H. (1973). Structure factor and radial distribution function for liquid argon at 85 K. Physical Review A, 7(6), 2130. .. [2] On the determination of the pair correlation function from liquid structure factor measurements A.K. Soper Chemical Physics 107, 61-74, (1986) """ # determine later radii nn = interpolatefactor * (Sq.X.shape[0]//2)*2 delta = Sq.X.max() / nn Q = np.r_[0:Sq.X.max():1j * nn] rrr = 2 * np.pi * scipy.fft.fftfreq(nn, delta)[1:nn // 2] # interpolation for more or smoother points Yminus1 = scipy.interpolate.interp1d(Sq.X, Sq.Y - 1, kind='cubic', bounds_error=False, fill_value=(Sq.Y[0], 0))(Q) # Yminus1=scipy.interpolate.interp1d(Sq.X,Sq.Y-1,kind=2)(Q) # doing sine transform to solve the sin integral Sqdst = scipy.fft.dst(Yminus1 * Q) * Q.max() / nn / (2 * np.pi) gr = 1 / (2 * np.pi ** 2 * rrr) * Sqdst[2::2] # grminus=1/(2*np.pi**2*rrr)*Sqdst[3::2]/(2*np.pi) n0 = -1 / (2 * np.pi ** 2) * scipy.integrate.simps(Sq.X ** 2 * (Sq.Y - 1), Sq.X) factor = abs(gr[abs(rrr - R) < R / 2].mean()) gr = 1 + gr / factor # grminus=1+grminus/factor result = dA(np.c_[rrr, gr].T) result.n0 = n0 result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def PercusYevick(q, R, molarity=None, eta=None): r""" The Percus-Yevick structure factor of a hard sphere in 3D. Parameters ---------- q : array; N dim scattering vector; units 1/(R[unit]) R : float Radius of the object eta : float volume fraction as eta=4/3*pi*R**3*n with number density n in units or R molarity : float number density in mol/l and defines q and R units to 1/nm and nm to be correct preferred over eta if both given Returns ------- dataArray structure factor for given q Examples -------- :: import jscatter as js R = 6 phi = 0.05 depth = 15 q = js.loglist(0.01, 2, 200) p = js.grace(1,1) for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]: py = js.sf.PercusYevick(q, R, eta=eta) p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}') p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5) p.legend(x=1, y=0.9) p.xaxis(min=0, max=1.5) p.title('3D Percus-Yevick structure factor') #p.save(js.examples.imagepath+'/PercusYevick.jpg') .. image:: ../../examples/images/PercusYevick.jpg :width: 50 % :align: center :alt: PercusYevick Notes ----- Structure factor for the potential in 3D .. math:: \begin{align} U(r) & = \infty \ & r<=R \\ & = 0 \ & r>R \end{align} The Problem is given in [1]_; the solution in [2]_ and the best description of the solution is in [3]_. References ---------- .. [1] J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958). .. [2] M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963). .. [3] D. J. Kinning and E. L. Thomas, Macromolecules 17, 1712 (1984). """ q = np.atleast_1d(q) R = abs(R) # get volume fraction eta from number density and radius R if isinstance(molarity, numbers.Number): molarity = abs(molarity) numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3 eta = 4 / 3. * np.pi * R ** 3 * numdens elif isinstance(eta, numbers.Number): eta = abs(eta) numdens = eta / (4 / 3. * np.pi * R ** 3) molarity = numdens / (constants.N_A * 1e-24) else: raise Exception('one of molarity/eta needs to be given.') if R == 0 or eta == 0: Sq = np.ones_like(q) a = 1. else: u = q * R * 2 u = np.where(u >= 0.01, u, np.ones_like(u) * 0.01) # problems with number limits for to small u and avoid zero a = (1 + 2 * eta) ** 2 / (1 - eta) ** 4 b = -3 / 2 * eta * (eta + 2) ** 2 / (1 - eta) ** 4 UU = (a * (np.sin(u) - u * np.cos(u)) + b * ((2 / u ** 2 - 1) * u * np.cos(u) + 2 * np.sin(u) - 2 / u) + eta * a / 2 * (24 / u ** 3 + 4 * (1 - 6 / u ** 2) * np.sin(u) - (1 - 12 / u ** 2 + 24 / u ** 4) * u * np.cos(u))) _Sq = 1 / (1 + 24 * eta / u ** 3 * UU) Sq = np.where(u > 0.02, _Sq, np.ones_like(u) / a) # for low u we use the S(q=0) = 1/a result = dA(np.r_[[q, Sq]]) result.setColumnIndex(iey=None) result.modelname = inspect.currentframe().f_code.co_name result.eta = eta result.molarity = molarity result.radius = R result.Sq0 = 1 / a return result
[docs] def PercusYevick2D(q, R=1, eta=0.1, a=None): r""" The PercusYevick structure factor of a hard sphere in 2D. Parameters ---------- q : array; N dim Scattering vector; units 1/(R[unit]) R : float, default 1 Radius of the object eta : float, default 0.1 Packing fraction as eta=pi*R**2*n with number density n maximum hexagonal closed packed :math:`eta= (\pi R^2)/(3/2 3^{1/2}a^2)` :math:`R_{max}=a 3^{1/2}/2` with max packing of 0.9069. a : float, default None Calculate eta from hexagonal lattice constant a as :math:`eta=\frac{2\pi R^2}{3\sqrt{3}a^2}`. This keeps the average distance of the sphere constant. Returns ------- dataArray Notes ----- Structure factor for the potential in 2D .. math:: \begin{align} U(r) & = \infty \ & r<=R \\ & = 0 \ & r>R \end{align} Examples -------- :: import jscatter as js R = 6 phi = 0.05 depth = 15 q = js.loglist(0.01, 2, 200) p = js.grace(1,1) for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]: py = js.sf.PercusYevick2D(q, R, eta=eta) p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}') p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5) p.legend(x=1, y=0.9) p.xaxis(label='Q / nm\S-1',min=0, max=1.5, charsize=1.5) p.title('2D Percus-Yevick structure factor') # p.save(js.examples.imagepath+'/PercusYevick2D.jpg') .. image:: ../../examples/images/PercusYevick2D.jpg :width: 50 % :align: center :alt: PercusYevick2D References ---------- .. [1] Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: Structure factors for the hard-disk (D=2) mixtures in simple explicit form Yaakov Rosenfeld Phys. Rev. A 42, 5978 """ if a is not None: eta = (np.pi * R ** 2) / (3 / 2. * 3 ** 0.5 * a ** 2) q = np.atleast_1d(q) if R == 0 or eta == 0: Sq = np.ones_like(q) else: qR = lambda q: q * R u = np.piecewise(q, [q == 0], [1e-8, qR]) # exchange q=zero with small Q as limit Xi = (1 + eta) / (1 - eta) ** 3 G = (1 - eta) ** -1 Z = (1 - eta) ** -2 A = (1 + (2 * eta - 1) * Xi + 2 * eta * G) / eta B = ((1 - eta) * Xi - 1 - 3 * eta * G) / eta UU = 4 * eta * ( A * (special.j1(u) / u) ** 2 + B * special.j0(u) * special.j1(u) / u + G * special.j1(2 * u) / u) Sq = 1 / (1 + UU) result = dA(np.r_[[q, Sq]]) result.setColumnIndex(iey=None) result.packingfraction = eta result.R = R result.a = (np.pi * R ** 2 / (eta * 3 / 2. * 3 ** 0.5)) ** 0.5 result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def PercusYevick1D(q, R=1, eta=0.1): r""" The PercusYevick structure factor of a hard sphere in 1D. Structure factor for the potential U(r)= (inf for 0<r<R) and (0 for R<r). Parameters ---------- q : array; N dim scattering vector; units 1/(R[unit]) R : float Radius of the object in nm. eta : float Packing fraction as eta=2*R*n with number density n. Returns ------- dataArray [q,structure factor] Notes ----- Structure factor for the potential in 1D .. math:: \begin{align} U(r) & = \infty \ & r<=R \\ & = 0 \ & r>R \end{align} Examples -------- :: import jscatter as js R = 6 phi = 0.05 depth = 15 q = js.loglist(0.01, 2, 200) p = js.grace(1,1) for eta in [0.005,0.01,0.03,0.05,0.1,0.2,0.3,0.4]: py = js.sf.PercusYevick1D(q, R, eta=eta) p.plot(py, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}') p.yaxis(min=0.0, max=2.2, label='S(Q)', charsize=1.5) p.legend(x=1, y=0.9) p.xaxis(min=0, max=1.5) p.title('1D Percus-Yevick structure factor') #p.save(js.examples.imagepath+'/PercusYevick1D.jpg') .. image:: ../../examples/images/PercusYevick1D.jpg :width: 50 % :align: center :alt: PercusYevick1D References ---------- .. [1] Exact solution of the Percus-Yevick equation for a hard-core fluid in odd dimensions Leutheusser E Physica A 1984 vol: 127 (3) pp: 667-676 .. [2] On the equivalence of the Ornstein–Zernike relation and Baxter’s relations for a one-dimensional simple fluid Chen M Journal of Mathematical Physics 1975 vol: 16 (5) pp: 1150 """ q = np.atleast_1d(q) D = 2. * R nn = eta / D if R == 0 or eta == 0: Sq = np.ones_like(q) else: # exchange q=zero with small Q as limit Q = np.piecewise(q, [q == 0], [1e-8, lambda q: q]) xi = (1 - D * nn) cQ = -2 * (1. / Q / xi * np.sin(Q * D) + nn / Q ** 2 / xi ** 2 * (1 - np.cos(Q * D))) Sq = (1 - cQ * nn) ** -1 # =1/A eq 6 and 8b of [1]_ result = dA(np.r_[[q, Sq]]) result.setColumnIndex(iey=None) result.packingfraction = eta result.R = R result.nkTkappa = xi ** 2 result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def stickyHardSphere(q, R, width, depth, molarity=None, phi=None): r""" Structure factor of a square well potential with depth and width (sticky hard spheres). Sticky hard sphere model is derived using a perturbative solution of the factorized form of the Ornstein-Zernike equation and the Percus-Yevick closure relation. The perturbation parameter is width/(width+2R) S(Q) is defined in [1]_ equation 29 . Parameters ---------- q : array; N dim Scattering vector; units 1/(R[unit]) R : float Radius of the hard sphere phi : float Volume fraction of the hard core particles molarity : float Number density in mol/l and defines q and R units to 1/nm and nm to be correct Preferred over phi if both given. depth : float Potential well depth in kT depth >0 (U<0); positive potential allowed (repulsive) see [1]_. width : float Width of the square well Returns ------- S(Q) : dataArray Notes ----- The potential U(r) is defined as .. math:: \begin{align} U(r) &= \infty & r<2R \\ &= -depth[kT] & 2R<r<2R+width \\ &= 0 & r>2R+width \end{align} Other definitions include - eps=width/(2*R+width) - stickiness=exp(-depth)/12./eps Examples -------- :: import jscatter as js R = 6 phi = 0.05 depth = 15 q = js.loglist(0.01, 2, 200) p = js.grace(1,1) for eta in [0.005,0.01,0.03,0.05,0.1,0.2]: shs = js.sf.stickyHardSphere(q, R, 1, 3, phi=eta) p.plot(shs, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}') p.yaxis(min=0.0, max=3.2, label='S(Q)', charsize=1.5) p.legend(x=1, y=3) p.xaxis(min=0, max=1.5) p.title('sticky hard sphere structure factor') #p.save(js.examples.imagepath+'/stickyHardSphere.jpg') .. image:: ../../examples/images/stickyHardSphere.jpg :width: 50 % :align: center :alt: stickyHardSphere References ---------- .. [1] S.V. G. Menon, C. Manohar, and K. S. Rao, J. Chem. Phys. 95, 9186 (1991) .. [2] M. Sztucki, T. Narayanan, G. Belina, A. Moussaïd, F. Pignon, and H. Hoekstra, Phys. Rev. E 74, 051504 (2006) .. [3] W.-R. Chen, S.-H. Chen, and F. Mallamace, Phys. Rev. E 66, 021403 (2002) .. [4] G. Foffi, E. Zaccarelli, F. Sciortino, P. Tartaglia, and K. A. Dawson, J. Stat. Phys. 100, 363 (2000) """ # get volume fraction eta from number density and radius R if isinstance(molarity, numbers.Number): numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3 phi = 4 / 3. * np.pi * R ** 3 * numdens elif isinstance(phi, numbers.Number): numdens = phi / (4 / 3. * np.pi * R ** 3) molarity = numdens / (constants.N_A * 1e-24) else: raise Exception('one of molarity/eta needs to be given.') # to prevent math errors if depth < -200: depth = -200 q = np.atleast_1d(q) Q = np.piecewise(q, [q == 0], [1e-8, lambda q: q]) # avoid zero eps = width / (2 * R + width) # perturbation parameter if eps == 0: eps = 1e-10 tau = math.exp(-depth) / 12. / eps # stickiness eta = phi * (1 - eps) ** 3 lam = (1 + 0.5 * eta) / (1 - eta) ** 2 / (eta ** 2 / (1 - eta) - eta / 12. + tau) mu = lam * eta * (1 - eta) al = (1 + 2 * eta - mu) / (1 - eta) ** 2 be = (-3 * eta + mu) / 2. / (1 - eta) ** 2 k = Q * (2 * R + width) sink = np.sin(k) cosk = np.cos(k) Ak = 1 + 12 * eta * (al * ((sink - k * cosk) / k ** 3) + be * (1 - cosk) / k ** 2 - lam / 12. * sink / k) Bk = 12 * eta * (al * (0.5 / k - sink / k ** 2 + (1 - cosk) / k ** 3) + be * (1 / k - sink / k ** 2) - lam / 12. * ((1 - cosk) / k)) Sk = 1. / (Ak * Ak + Bk * Bk) result = dA(np.r_[[q, Sk]]) result.welldepth = depth result.weelwidth = width result.stickiness = tau result.volumefraction = phi result.eta = eta result.molarity = molarity result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def adhesiveHardSphere(q, R, tau, delta, molarity=None, eta=None): r""" Structure factor of a adhesive hard sphere potential (a square well potential) Parameters ---------- q : array; N dim Scattering vector; units 1/(R[unit]) R : float Radius of the hard core eta : float Volume fraction of the hard core particles. molarity : float Number density in mol/l and defines q and R units to 1/nm and nm to be correct Preferred over eta if both given. tau : float Stickiness :math:`\tau` delta : float Width of the square well :math:`\delta` Notes ----- The potential U(d) for a distance d between particles with radius R is defined as .. math:: U(d) &= \infty & & d<2R \\ &= -depth=ln(\frac{12 \tau\delta}{2R+\delta})& \quad &2R<d<2R+\delta \\ &= 0 & & d>2R+\delta Examples -------- :: import jscatter as js R = 6 phi = 0.05 depth = 15 q = js.loglist(0.01, 2, 200) p = js.grace(1,1) for eta in [0.005,0.01,0.03,0.05,0.1,0.2]: shs = js.sf.adhesiveHardSphere(q, R, 1, 3, eta=eta) p.plot(shs, symbol=0, line=[1, 3, -1], legend=f'eta ={eta:.3f}') p.yaxis(min=0.0, max=3.2, label='S(Q)', charsize=1.5) p.legend(x=1, y=3) p.xaxis(min=0, max=1.5) p.title('adhesive hard sphere structure factor') #p.save(js.examples.imagepath+'/adhesiveHardSphere.jpg') .. image:: ../../examples/images/adhesiveHardSphere.jpg :width: 50 % :align: center :alt: adhesiveHardSphere References ---------- .. [1] C. Regnaut and J. C. Ravey, J. Chem. Phys. 91, 1211 (1989). .. [2] C. Regnaut and J. C. Ravey, J. Chem. Phys. 92 (5) (1990), 3250 Erratum """ # get volume fraction eta from number density and radius R if isinstance(molarity, numbers.Number): numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3 eta = 4 / 3. * np.pi * R ** 3 * numdens elif isinstance(eta, numbers.Number): numdens = eta / (4 / 3. * np.pi * R ** 3) molarity = numdens / (constants.N_A * 1e-24) else: raise Exception('one of molarity/eta needs to be given.') q = np.atleast_1d(q) sigma = 2. * R + delta k = np.piecewise(q, [q == 0], [1e-8, lambda q: q * sigma]) phi = eta * (sigma / (2 * R)) ** 3 lam = 6. * (tau / phi + 1.0 / (1. - phi)) try: lam1 = lam + math.sqrt(lam ** 2 - 12. / phi * (1. + 0.5 * phi) / (1 - phi) ** 2) lam2 = lam - math.sqrt(lam ** 2 - 12. / phi * (1. + 0.5 * phi) / (1 - phi) ** 2) lambd = lam1 if abs(lam1) < abs(lam2) else lam2 except ValueError: # complex root return -1 mu = lambd * phi * (1. - phi) A = 0.5 * (1. + 2. * phi - mu) / (1. - phi) ** 2 B = 0.5 * sigma * (mu - 3. * phi) / (1. - phi) ** 2 C = -A * sigma ** 2 - B * sigma + lambd * sigma ** 2 / 12. sink = np.sin(k) cosk = np.cos(k) I0 = sink / k I1 = (cosk + k * sink - 1.0) / k ** 2 I2 = (k ** 2 * sink - 2.0 * sink + 2.0 * k * cosk) / k ** 3 J0 = (1 - cosk) / k J1 = (sink - k * cosk) / k ** 2 J2 = (2. * sink * k + 2. * cosk - k ** 2 * cosk - 2.) / k ** 3 alpha = 1.0 - 12.0 * phi * (C / sigma ** 2 * I0 + B / sigma * I1 + A * I2) beta = 12.0 * phi * (C / sigma ** 2 * J0 + B / sigma * J1 + A * J2) SQ = 1. / (alpha * alpha + beta * beta) result = dA(np.r_[[q, SQ]]) try: result.welldepth = math.log(12 * tau * delta / sigma) except ZeroDivisionError: result.welldepth = -np.inf result.wellwidth = delta result.stickiness = tau result.welldepth = math.log(12 * tau * delta / sigma) if 12 * tau * delta / sigma > 0 else np.inf result.HSvolumefraction = eta result.phi = phi result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def criticalSystem(q, cl, itc): r""" Structure factor of a critical system according to the Ornstein-Zernike form. Parameters ---------- q : array; N dim Scattering vector; units 1/(cl[unit]) cl : float Correlation length in units nm. itc : float Isothermal compressibility of the system. Notes ----- .. math:: S(q) = \frac{itc}{1+q^2 cl^2} - The peaking of the structure factor near Q=0 region is due to attractive interaction. - Away from it the structure factor should be close to the hard sphere structure factor. - Near the critical point we should find :math:`S(q)=S_{PY}(q)+S_{OZ}(q)` - :math:`S_{PY}` Percus Yevick structure factor - :math:`S_{OZ}` this function References ---------- .. [1] Analysis of Critical Scattering Data from AOT/D2O/n-Decane Microemulsions S. H. Chen, T. L. Lin, M. Kotlarchyk Surfactants in Solution pp 1315-1330 """ Q = np.atleast_1d(q) result = dA(np.r_[[Q, itc / (1 + Q ** 2 * cl ** 2)]]) result.corrlength = cl result.isothermalcompress = itc result.modelname = inspect.currentframe().f_code.co_name return result
# ------------------------------------------------------------------ # hydrodynamic function # see Beenakker ref 2 Table 1, given is phi*gamma0^m/n _tablegamma0 = '0.0 0.0 0.0 0.0 0.0 \ 0.05 0.0553 0.0542 0.0533 0.0525 0.10 0.1228 0.1177 0.1135 0.1104 0.15 0.2048 0.1918 0.1813 0.1738 \ 0.20 0.3038 0.2777 0.2574 0.2432 0.25 0.4224 0.3766 0.3423 0.3186 0.30 0.5627 0.4895 0.4364 0.4005 \ 0.35 0.7267 0.6172 0.5402 0.4888 0.40 0.9157 0.7601 0.6538 0.5839 0.45 1.1310 0.9183 0.7776 0.6856' _gamma0 = np.fromstring(_tablegamma0, sep=' ').reshape(-1, 5).T # interpolate polynom order 3 _gamma0poly = np.polyfit(_gamma0[0], _gamma0[1:].T, 4) # about 200µs # calc values as np.polyval(_gamma0poly,xx) def _Sg(xx, mm1): """ from Genz [1] equ 6 with gamma0 from [2]_ Table 1 Sg=C(x) + ....... this is for all ak (see Beenakker ref 2 ) and accurate in (volume fraction)**2 returns array """ x = np.where(xx == 0, np.ones_like(xx) * 1e-5, xx) # avoid zero x2 = 2 * x x3 = x * x * x x4 = x3 * x cxx = 9 / 2. * (special.sici(x2)[0] / x + 0.5 * np.cos(x2) / x / x + 0.25 * np.sin(x2) / x3 - np.sin(x) ** 2 / x4 - 4 / x3 / x3 * (np.sin(x) - x * np.cos(x)) ** 2) Cx = np.where(xx == 0, np.ones_like(xx) * 2.5, cxx) # zero is equal 2.5 func = (Cx + 9. / 4 * np.pi * 5 / 9. * mm1[0] * 9. / x3 * special.jn(1.5, x) ** 2 + 9. / 4 * np.pi * 1. * mm1[1] * 25. / x3 * special.jn(2.5, x) ** 2 + 9. / 4 * np.pi * 1. * mm1[2] * 49. / x3 * special.jn(3.5, x) ** 2 + 9. / 4 * np.pi * 1. * mm1[3] * 81. / x3 * special.jn(4.5, x) ** 2) return func # common limit volume fractions in _HINTEGRAL _phi_limit = 0.55 def _HINTEGRAL(Q, Rh, molarity, sffunc, sfargs=None, numberOfPoints=50): """ calculation of hydrodynamic function for one Q see hydrodynamicFunct """ # set to zero to get debug messages; debuglevel>10 no messages if sfargs is None: sfargs = {} phi = 4 / 3 * np.pi * Rh ** 3 * constants.N_A * molarity * 1e-24 if phi > _phi_limit: print('to large volume fraction %.3g in H' % phi) return -1 # coefficients for the gamma0^m/n mm1 = np.polyval(_gamma0poly, phi) / phi - 1 def Sq(q): """structure factor; infinite S(Q=inf)=1 """ # ravel q sf = sffunc(q.ravel(), **sfargs) # reshape sf to q shape if sf._isdataArray: return sf.Y.reshape(q.shape) return sf.reshape(q.shape) ak = np.r_[0:np.pi * 3:numberOfPoints * 3j, np.pi * 2:np.pi * 53:numberOfPoints * 4j] k = ak / Rh x = np.cos(np.r_[np.pi:0:-numberOfPoints * 2j]) # x is cos(angle(k,k`)) Qmk = np.sqrt(Q ** 2 + k ** 2 - 2 * Q * k * x[:, None]) # (Sq(Qmk)-1) is correct as compared with [2]_ equ 5.7 and 5.9 integrand = np.sinc(ak / np.pi) ** 2 / (1 + phi * _Sg(ak, mm1)) * (1 - x[:, None] ** 2) * (Sq(Qmk) - 1) integrandak = np.trapz(integrand, x=x, axis=0) integral = np.trapz(integrandak, x=ak, axis=0) return np.r_[Q, 3. / 2. / np.pi * integral] def _HINTEGRALDs(Rh, molarity, numberOfPoints=50): """ calculation of hydrodynamic function for the self diffusion Ds see hydrodynamicFunct number of points is number of points in integration in a pi interval """ # set to zero to get debug messages; debuglevel>10 no messages phi = 4. / 3 * np.pi * Rh ** 3 * constants.N_A * molarity * 1e-24 if phi > _phi_limit: print('to large volume fraction %.3g in Ds' % phi) return -1 # coefficients for the gamma0^m/n mm1 = np.polyval(_gamma0poly, phi) / phi - 1 ak = np.r_[0:np.pi * 3:numberOfPoints * 3j, np.pi * 3:np.pi * 153:numberOfPoints * 50j] integrandDs = np.sinc(ak / np.pi) ** 2 / (1 + phi * _Sg(ak, mm1)) integralDs = np.trapz(integrandDs, x=ak) return 2 / np.pi * integralDs
[docs] def hydrodynamicFunct(wavevector, Rh, molarity, intrinsicVisc=None, DsoverD0=None, structureFactor=None, structureFactorArgs=None, numberOfPoints=50, ncpu=-1): r""" Hydrodynamic function H(q) from hydrodynamic pair interaction of spheres in suspension. This allows the correction :math:`D_T(q)=D_{T0}H(q)/S(q)` for the translational diffusion :math:`D_T(q)` coefficient at finite concentration. We use the theory from Beenakker and Mazur [2]_ as given by Genz [1]_. The :math:`\delta\gamma`-expansion of Beenakker expresses many body hydrodynamic interaction within the renormalization approach dependent on the structure factor S(q). Parameters ---------- wavevector : array Scattering vector q in units 1/nm. Rh : float Effective hydrodynamic radius of particles in nm. molarity : float Molarity in units mol/l. - This overrides a parameter 'molarity' in the structureFactorArgs. - Rh and molarity define the hydrodynamic interaction, the volume fraction :math:`\Phi` and Ds/D0 for H(Q). - The structure factor may have a radius different from Rh e.g. for attenuated hydrodynamic interactions. DsoverD0 : float The high Q limit of the hydrodynamic function is for low volume fractions with self diffusion Ds :math:`\frac{D_s}{D_0}= 1/(1+[\eta] \Phi )` . - Ds is calculated from molarity and Rh. - This explicit value overrides intrinsic viscosity and calculated Ds/D0. structureFactor : function, None Structure factor S(q) with S(q=inf)=1.0 recommended. - If structurefactor is None a Percus-Yevick is assumed with molarity and R=Rh. - A function S(q,...) is given as structure factor, which might be an empirical function (e.g. polynominal fit of a measurement). First parameter needs to be wavevector q . structureFactorArgs : dictionary Any extra arguments to structureFactor e.g. structFactorArgs={'gamma':0.123,R=3,....} intrinsicVisc : float The intrinsic viscosity :math:`[\eta]` defines the high q limit for the hydrodynamic function. :math:`\eta(\Phi=0)/\eta(\Phi) = (1-[\eta] \Phi )=D_s/D_0` - :math:`[\eta]= 2.5` Einstein result for hard sphere with density 1 g/cm**3 - For proteins instead of volume fraction the protein concentration in g/cm³ with typical protein density 1.37 g/cm^3 is often used. Intrinsic Viscosity depends on protein shape (see HYDROPRO). - Typical real values for intrinsicVisc in practical units cm^3/g | sphere 1.76 cm^3/g = 2.5 sphere with protein density | ADH 3.9 cm^3/g = 5.5 a tetrameric protein | PGK 4.0 cm^3/g = 5.68 two domains with hinge-> elongated | Rnase 3.2 cm^3/g = 4.54 one domain numberOfPoints : integer, default 50 Determines number of integration points in equ 5 of ref [1]_ and therefore accuracy of integration. The typical accuracy of this function is <1e-4 for (H(q) -highQLimit) and <1e-3 for Ds/D0. ncpu : int, optional Number of cpus in the pool. - not given or 0 -> all cpus are used - int>0 min (ncpu, mp.cpu_count) - int<0 ncpu not to use Returns ------- dataArray Columns [q, hf, hf1, sf] - q values - hf : hydrodynamic function - hf1 : hydrodynamic function only Q dependent part = H(q) - highQLimit - sf : structure factor S(q) for H(q) calculation - .DsoverD0 : Ds/D0 Notes ----- As describdes in [1]_ .. math:: H(Q) = H_d(Q) + D_s(\Phi)/D_0 .. math:: H_d(Q)=\frac{3}{2\pi} \int_0^{\infty} dak \frac{sin^2(ak)}{(ak)^2[1+\Phi S_{\gamma}(ak)]} \times \int_{-1}^1 dx(1-x^2)(S(|\mathbf{Q}-\mathbf{k}|)-1) .. math:: \frac{D_s(\Phi)}{D_0} = \frac{2}{\pi}\int_0^{\infty} sinc^2(x)[1+\Phi S_{\gamma}(x)]^{-1} :math:`x=cos(\mathbf{Q},\mathbf{k})` is the angle between vectors Q and k, :math:`\Phi=4\pi/3a^3/V` volume fraction of spheres with radius a. :math:`S_{\gamma}(x)` is a known function given by Genz [1]_. :math:`D_s/D_0` from above(equ. 11 in [1]_) is valid for volume fractions up to 0.45 (according to ref [3]_). With this assumption the deviation of self diffusion :math:`D_s/D_0` from Ds/Do=[1-1.73*phi+0.88*phi**2+ O(phi**3)] is smaller 5% for phi<0.2 (10% for phi<0.3) We allow volume fractions up to 0.55 for the numerical calculation. Examples -------- See :ref:`Hydrodynamic function`. References ---------- .. [1] U. Genz and R. Klein, Phys. A Stat. Mech. Its Appl. 171, 26 (1991). .. [2] C. W. J. Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 126, 349 (1984). .. [3] C. W. J. Beenakker and P. Mazur, Phys. A Stat. Mech. Its Appl. 120, 388 (1983). """ # set to zero to get debug messages; debuglevel>10 no messages if structureFactorArgs is None: structureFactorArgs = {} debuglevel = 0 if structureFactor is None: # we use Percus-Yevick Structure factor --> hard spheres structureFactor = PercusYevick if 'R' not in structureFactorArgs: structureFactorArgs = {'R': Rh} sfcode = formel._getFuncCode(structureFactor) if 'molarity' in structureFactorArgs or \ 'molarity' in sfcode.co_varnames[:sfcode.co_argcount]: # the last examines the function # overwrite or append 'molarity' structureFactorArgs = dict(structureFactorArgs, **{'molarity': molarity}) if debug > debuglevel: p = grace() XX = np.r_[min(wavevector) / 10.:max(wavevector) * 2:100j] p.plot(structureFactor(XX, **structureFactorArgs), line=1, symbol=0) p.plot(structureFactor(wavevector, **structureFactorArgs)) # volume fraction phi = lambda mol, R: 4 / 3. * np.pi * R ** 3 * constants.N_A * mol / 10e7 ** 3 if phi(molarity, Rh) > _phi_limit: raise ValueError( 'Volume fraction %.3g to high; Chose appropriate Rh or molarity for Volume fraction <0.55' % phi(molarity, Rh)) qqq = np.atleast_1d(wavevector) columnname = 'q; hf; hf1; sf' if debug > debuglevel: print(columnname[: -4]) def cb(res): # for intermediate results print(res[0], 1 + res[1], (0 + res[1])) else: cb = None Ds = _HINTEGRALDs(Rh=Rh, molarity=molarity, numberOfPoints=numberOfPoints) if DsoverD0 is not None: Hinf = DsoverD0 elif intrinsicVisc is not None: DsintrVisc = 1 / (1 + intrinsicVisc * phi(molarity, Rh)) Hinf = DsintrVisc DsoverD0 = DsintrVisc else: Hinf = Ds DsoverD0 = Ds # in parallel for production run # if debug!= None it will be single thread res = formel.doForList(funktion=_HINTEGRAL, loopover='Q', looplist=qqq, Rh=Rh, molarity=molarity, sffunc=structureFactor, sfargs=structureFactorArgs, numberOfPoints=numberOfPoints, ncpu=ncpu, cb=cb, output=False) # and calc final result from this result = dA(np.c_[qqq, Hinf + np.array(res)[:, 1], np.array(res)[:, 1], structureFactor(wavevector, **structureFactorArgs).Y].T) if debug > debuglevel: p.plot(result) result.Sq = structureFactor result.SqArgs = str(structureFactorArgs) result.Rh = Rh result.molarity = molarity result.intrinsicVisc = intrinsicVisc result.phi_Rh = phi(molarity, Rh) result.DsoverD0 = DsoverD0 result.numberOfPoints = numberOfPoints result.columnname = columnname result.setColumnIndex(iey=None) return result
[docs] def weakPolyelectrolyte(q, cp, l, f, cs, ioc=None, eps=None, Temp=273.15 + 20, contrast=None, molarVolume=None): r""" Monomer-monomer structure factor S(q) of a weak polyelectrolyte according to Borue and Erukhimovich [3]_. Polyelectrolyte models based on [3]_ are valid above "the critical concentration when electrostatic blobs begin to overlap", see equ. 2 in [3]_ and above where we don't see isolated chains. The used RPA is valid only at high polymer concentrations where concentration fluctuations are weak [4]_. Parameters ---------- q : array Scattering vector in units 1/nm. cp : float Monomer concentration :math:`c_p` in units mol/l. The monomer concentration is :math:`N c_{p}. l : float Monomer length in units nm. f : float Fraction of charged monomers :math:`f`. The abs(f) values is used. cs : float Monovalent salt concentration :math:`c_s` in the solvent in units mol/l. This may include ions from water dissociation. ioc : float, default 0 Additional contribution to the inverse osmotic compressibility Dm of neutral polymer solution in units :math:`nm^3`. Inverse osmotic compressibility is :math:`Dm=1/(Nc)+v+w^2c` (see [2]_) The additional contribution is :math:`ioc=v+w^2c` as used in [1]_ and can be positive or negative. :math:`v` and :math:`w` are the second and third virial coefficients [1]_. eps : float Dielectric constant of the solvent to determine the Bjerum length. Default is H2O at given temperature. Use formel.dielectricConstant to determine the constant for your water based solvent including salt. For H2O at 293.15 K = 80.08 . Added 1M NaCl = 91.08 Temp : float, default 273.15+20 Temperature in units Kelvin. contrast : float, default None Contrast of the polymer :math:`\rho_{monomer}` relative to the solvent as difference of scattering length densities in units :math:`nm^{-2}`. See Notes for determination of absolute scattering. contrast and molarVolume need to be given. molarVolume : float, default None Molar volume :math:`V_{monomer}` of the polymer in :math:`nm^{3}`. See Notes for determination of absolute scattering. contrast and molarVolume need to be given. Returns ------- dataArray : 2 x N Columns [q, Sq] - .epsilon - .kappa in 1/nm - .screeninglength in nm - .r0 characteristic screening length without salt in units nm. - .c_monomer Monomer concentration in mol/l - .c_salt Salt concentration in mol/l - .c_ions Ion concentration as :math:`2c_s + fc_p` in mol/l - .monomerscatteringlength :math:`c = V_{monomer}\rho_{monomer}`. If contrast or molarVolume are None then c=1. Sq units is 1/nm = 1/(1e-7 cm) = 1e7 1/cm. (multiply by 1e7 to get units 1/cm) Notes ----- Borue and Erukhimovich [3]_ describe the polyelectrolyte scattering in reduced variables (see [3]_ equ 39). Rewriting this equation expressing the reduced variables s and t in terms of :math:`r_0` yields : .. math:: S(q) = c^2 \frac{1}{4\pi l_b f^2} \frac{q^2+\kappa^2}{1+r_0^4(q^2+\kappa^2)(q^2-12hc_p/l^2)} with - :math:`r_0^2 = \frac{l}{f\sqrt{48c_p\pi l_b} }` characteristic scale of screening without salt - :math:`c=V_{monomer}\rho_{monomer}` scattering length monomer. - :math:`l_b = e^2/4\pi\epsilon kT \approx 0.7 nm` Bjerum length. - :math:`\kappa^{-1}=\frac{1}{\sqrt{4\pi l_b (\sum_s{2c_s} + fc_p)}}` Debye-Hückel screening length from salt ions and polymer. - :math:`h=ioc` Additional contribution to inverse compressibility. - :math:`v` and :math:`w` are the second and third virial coefficients between monomers :math:`\rightarrow ioc=v+w^2c` [1]_. For low salt concentration (:math:`\kappa < r_0`) the peak is expected at :math:`(q^{*2}+\kappa^2)^2 = r_0^{-4}` (see [1]_ and [2]_ after euq. 14) and vanishes for :math:`\kappa > r_0` (see [2]_). Examples -------- Poly(sodium 4-styrenesulfonate)(PSS-Na) with a bulk density of 0.801 g/mL. Monomer MW = 184 g/mol, monomer length 2 C-C bonds = 2 * 0.15 nm :: import jscatter as js import numpy as np q=js.loglist(0.01,4,100) Vm=184/0.801/6.022140857e+23/1e-21 # partial molar volume of the polymer in nm**3 c=0.000698-0.000942 # PSS in H2O for X-ray scattering has negative contrast p=js.grace(1.2,1) for i,cp in enumerate([5, 10, 20, 30, 60],1): # conc in g/l c17=cp/184 # conc in mol/l Sq=js.sf.weakPolyelectrolyte(q=q, l=0.3, cp=c17, f=0.05, cs=0.005,ioc=0,contrast=c,molarVolume=Vm) Sq.Y*=1e7 # conversion to 1/cm p.plot(Sq,sy=[i,0.4,i],li=0,le='c={0:.3} mg/ml'.format(c17)) Sqi=js.sf.weakPolyelectrolyte(q=q, l=0.3, cp=c17, f=0.05, cs=0.005,ioc=-0.02,contrast=c,molarVolume=Vm) Sqi.Y*=1e7 p.plot(Sqi,li=[1,1,i],sy=0,le='ioc=-0.02 c={0:.3} mg/ml'.format(c17)) p.yaxis(scale='log',min=Sq.Y.min()/15,max=Sq.Y.max(),label='I(q) / 1/cm') p.xaxis(scale='log',min=0.01,max=4,label=r'q / nm\S-1') p.title('A polyelectrolyte at low salt') p.legend(x=0.02,y=1.5e-1) #p.save(js.examples.imagepath+'/weakPolyelectrolyte.png') .. image:: ../../examples/images/weakPolyelectrolyte.png :align: center :height: 300px :alt: weakPolyelectrolyte References ---------- .. [1] Annealed and quenched polyelectrolytes. Raphael, E., & Joanny, J. F. (1990). EPL, 13(7), 623–628. https://doi.org/10.1209/0295-5075/13/7/009 .. [2] Weakly charged polyelectrolytes in a poor solvent J.F. Joanny, L. Leibler J. Phys. France 51, 545-557 (1990) DOI: 10.1051/jphys:01990005106054500 .. [3] A statistical theory of weakly charged polyelectrolytes: fluctuations, equation of state and microphase separation V. Yu. Borue, I. Ya. Erukhimovich, Macromolecules (1988) 21, 11, 3240-3249 .. [4] 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions M. Muthukumar Macromolecules201750249528-9560 See p 9537 Pitfall of RPA for Polyelectrolyte solution """ result = dA(np.c_[q, q].T) # add attributes in units mol/l result.c_salt = cs result.c_monomer = cp result.c_ions = 2 * cs + cp * abs(f) # unit conversion to nm # ion concentration for monovalent salt concentration in 1/nm**3 accounting for ion and counter ion cs = cs * constants.N_A / 1e24 # monomer concentration in 1/nm**3 cp = cp * constants.N_A / 1e24 if eps is None: eps = formel.dielectricConstant('h2o', T=Temp) if ioc is None: ioc = 0 # -l**3*(-0.1) # Bjerrum length in units nm as about 0.7 nm. lb = constants.e ** 2 / (4 * np.pi * eps * constants.epsilon_0 * Temp * constants.Boltzmann) * 1e9 # squared inverse screening length kappa from Debye-Hückel k2 = 4 * np.pi * lb * (2 * cs + cp * f) q2 = q ** 2 # characteristic scale of screening squared r02 = l / f / (cp * 48 * np.pi * lb) ** 0.5 # monomer monomer structure factor S(q) result.Y = (q2 + k2) / (4 * np.pi * lb * abs(f) ** 2) / (1 + r02 * r02 * (q2 + k2) * (q2 - 12 * ioc * cp / l ** 2)) if contrast is not None and molarVolume is not None: # scale to get absolute scattering c = molarVolume * contrast result.Y = c ** 2 * result.Y result.monomerscatteringlength = c result.setColumnIndex(iey=None) result.columnname = 'q; Sq' result.epsilon = eps result.kappa = k2 ** 0.5 result.screeninglength = 1 / result.kappa result.r0 = r02 ** 0.5 result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def fractal(q, clustersize, particlesize, df=2): r""" Structure factor of a fractal cluster of particles following Teixeira (mass fractal). To include the shape/structure of a particle with formfactor F(q) use S(q)*F(q) with particlesize related to the specific formfactor. Parameters ---------- q : array Wavevectors in units 1/nm. clustersize : float Clustersize :math:`\xi` in units nm. May be correlated to Rg (see Notes). From [1]_: The meaning of :math:`\xi` is only qualitative and has to be made precise in any particular situation. Generally speaking, it represents the characteristic distance above which the mass distribution in the sample is no longer described by the fractal law. *In practice, it can represent the size of an aggregate or a correlation length in a disordered material.* particlesize : float Particle size in units nm. In [1]_ it is described as characteristic dimension of individual scatterers. See Notes. df : float, default=2 Hausdorff dimension, :math:`d_f` defined as the exponent of the linear dimension R in the relation :math:`M(R) \propto (R/r_0)^{d_f}` where M represents the mass and :math:`r_0` is the gauge of measurement. See [1]_. Returns ------- dataArray : [q, Sq] input parameters as attributes - .Rg :math:`Rg = d_f(d_f+1) \xi^2/2` See [1]_ after equ. 17 - .Sq0 :math:`S(q=0) = 1 + (\xi/r_0)^{d_f} \Gamma(d_f+1)` see [1]_ equ. 17 Notes ----- - The structure factor [1]_ equ 16 is .. math :: S(q) = 1 + \frac{d_f\ \Gamma\!(d_f-1)}{[1+1/(q \xi)^2\ ]^{(d_f -1)/2}} \frac{\sin[(d_f-1) \tan^{-1}(q \xi) ]}{(q R_0)^{d_f}} - At large q the unity term becomes dominant and we get :math:`S(q)=1`. Accordingly the formfactor of the particles becomes visible. - At intermediate q :math:`\xi^{-1} < q < r_0^{-1}` the structure factor reduces to :math:`S(q)=q^{-d_f}` - The radius of gyration is related to the cluster size :math:`\xi` as :math:`Rg = d_f(d_f+1) \xi^2/2` See [1]_ after equ. 17. - According to [1]_ the particlesize relates to a characteristic dimension of the particles. The particlesize determines the intersection of the extrapolated power law region with 1 thus the region where the particle structure gets important. The particlesize can be something like the radius of gyration of a Gaussian or collapsed chain, a sphere radius or the mean radius of a protein. It might also be the clustersize of a fractal particle. - In SASview the particlesize is related to the radius of aggregating spheres (or core shell sphere) including a respective formfactor. Examples -------- Here a fractal structure of a cluster of spheres is shown. The size of the spheres is the particlesize on the cluster. The typical scheme :math:`I(q)=P(q)S(Q)` with particle formfactor :math:`P(q)` and structure factor :math:`S(Q)` is used. The volume and contrast is included in :math:`P(q)`. Add a background if needed or use a different particle as core-shell sphere. :: import jscatter as js import numpy as np q=js.loglist(0.01,5,300) p=js.grace(1.5,1) p.multi(1,2) clustersize = 20 particlesize = 2 fq=js.ff.sphere(q,particlesize) for df in np.r_[0:3:7j]: Sq=js.sf.fractal(q, clustersize, particlesize, df=df) p[0].plot(Sq,le=f'df={df:.2f}') p[1].plot(Sq.X,Sq.Y*fq.Y,li=-1,le=f'df={df:.2f}') p[0].yaxis(scale='log',label='I(q) ',min=0.1,max=1e4) p[0].xaxis(scale='log',min=0.01,max=4,label='q / nm\S-1') p[0].title(r'Fractal structure factor') p[0].subtitle('df is fractal dimension') p[0].legend(x=0.5,y=1000) p[1].yaxis(scale='log',min=0.1,max=1e8,label=['I(q)',1.0,'opposite'],ticklabel=['power',0,1,'opposite']) p[1].xaxis(scale='log',min=0.01,max=4,label='q / nm\S-1') p[1].title(r'Fractal structure factor of spheres') p[1].subtitle('sphere formfactor is added') p[1].legend(x=0.5,y=1e7) #p.save(js.examples.imagepath+'/fractalspherecluster.png') .. image:: ../../examples/images/fractalspherecluster.png :align: center :height: 300px :alt: fractalspherecluster References ---------- .. [1] Small-Angle Scattering by Fractal Systems J. Teixeira, J. Appl. Cryst. (1988). 21,781-785 """ q = np.array(q) gamma = special.gamma xi = clustersize r0 = particlesize qxi = q * xi Sq = np.zeros_like(q) # catch gamma divergence at 0 and 1 if df == 0: Sq = np.ones_like(q) else: if df == 1: Sq[q > 0] = 1 + np.arctan(qxi[q > 0]) / (q[q > 0] * r0) else: Sq[q > 0] = 1 + df * gamma(df - 1) / (1 + 1 / qxi[q > 0] ** 2) ** ((df - 1) / 2.) * \ np.sin((df - 1) * np.arctan(qxi[q > 0])) / (q[q > 0] * r0) ** df Sq[q == 0] = 1 + (xi / r0) ** df * gamma(df + 1) result = dA(np.c_[q, Sq].T) result.setColumnIndex(iey=None) result.columnname = 'q; Sq' result.modelname = inspect.currentframe().f_code.co_name result.clustersize = clustersize result.particlesize = particlesize result.fractaldimension = df result.Rg = df * (df + 1) * xi ** 2 / 2 result.Sq0 = 1 + (xi / r0) ** df * gamma(df + 1) return result
[docs] def twoYukawa(q, R, K1, K2, scl1, scl2, molarity=None, phi=None): r""" Structure factor for a two Yukawa potential in mean spherical approximation. A two Yukawa potential in the mean spherical approximation describing cluster formation in the two-Yukawa fluid when the interparticle potential is composed of a short-range attraction and a long-range repulsion according to Liu et al.[1]_. Parameters ---------- q : array Wavevectors in units 1/nm. K1,K2 : float Potential strength in units kT. - K>0 attraction - K<0 repulsion scl1,scl2 : float Screening length in units nm. The inverse screening length is :math:`Z_i=1/scl_i`. R : float Radius of the particle in nm. phi : float Volume fraction of particles in the solution. molarity : float concentration in units mol/l. Overrides phi if both given. Returns ------- dataArray : [q,Sq] - additional input attributes - On errors in calculation Sq=0 is returned to prevent errors during fitting. These are no physical solution. Notes ----- The reduced potential (with :math:`Z_i=1/scl_i` and r scaled to yield a hardcore diameter of 1) is: .. math:: \frac{V(r)}{kT} &= \infty \; &for \; 0<r<1 &= -K_1 \frac{e^{-Z_1 (r-1)}}{r} -K_2 \frac{e^{-Z_2 (r-1)}}{r} \; &for \; r>1 within the MSA closure .. math:: h(r) &=-1 \; &for \; 0<r<1 c(r) &= -\frac{V(r)}{kT} \; &for \; r>1 - Internally, Z1>Z2 (=> scl1<scl2) is forced, which is accompanied in the Python code by a swap of K1<>K2 that fitting is smoother. - For unphysical or no solution zero is returned. - The solution is **unstable close to Z1=Z2**. In these cass the (R)MSA structure factor (single Yukawa) is more appropriate. The function tries to approximate a solution using K2=>(K1+K2), K1=>0.001K2,Z1=2 Z2 About the code: This Python version of TwoYukawa is based on the code from the IGOR version taken from NCNR_SANS_package by Steve Kline (https://github.com/sansigormacros/ncnrsansigormacros) The Igor version of this function is based in part on Matlab code supplied by Yun Liu. The XOP version of this function is based in part on c-code supplied by Marcus Henning. Please cite the paper [1]_, if you use the results produced by this code. Examples -------- This reproduces figure 1 in [1]_. This figure illustrates the existence of a cluster peak in the structure factor for increasing strength K1 of the long-range attraction. :: import numpy as np import jscatter as js q = np.r_[0.01:20:300j] R = 0.5 K2 = -1 scl1 = 1/10 scl2 = 1/0.5 phi =0.2 # p=js.grace(1,0.7) for K1 in np.r_[0,3,6,10]: Sq = js.sf.twoYukawa(q, R, K1, K2, scl1, scl2, phi=phi) p.plot(Sq,li=[1,4,-1],sy=0,le=f'K1={K1:.0f}') p.xaxis(label='QD',charsize=2) p.yaxis(label='S(Q)',charsize=2) p.legend(y=1.95,x=16,charsize=2) p.subtitle('S(q) of Two-Yukawa Potential',size=2) p.text(r'cluster \npeak',x=2,y=1.9,charsize=2) #p.save(js.examples.imagepath+'/twoYukawa.jpg') .. image:: ../../examples/images/twoYukawa.jpg :width: 50 % :align: center :alt: ellipsoid References ---------- .. [1] Cluster formation in two-Yukawa fluids Yun Liu, Wei-Ren Chen, and Sow-Hsin Chen THE JOURNAL OF CHEMICAL PHYSICS 122, 044507 (2005) http://dx.doi.org/10.1063/1.1830433 """ # get volume fraction phi from number density and radius R if isinstance(molarity, numbers.Number): molarity = abs(molarity) numdens = constants.N_A * molarity * 1e-24 # from mol/l to particles/nm**3 phi = 4 / 3. * np.pi * R ** 3 * numdens elif isinstance(phi, numbers.Number): phi = abs(phi) numdens = phi / (4 / 3. * np.pi * R ** 3) molarity = numdens / (constants.N_A * 1e-24) else: raise Exception('one of molarity/eta needs to be given.') # all details are handled in the Two_Yukawa lib Sq = Two_Yukawa.twoYukawa(q, R, K1, K2, 1/scl1, 1/scl2, phi) if isinstance(Sq, numbers.Number): # On error we return the error code return dA(np.c_[q, np.zeros_like(q)].T) result = dA(np.c_[q, Sq].T) result.setColumnIndex(iey=None) result.columnname = 'q; Sq' result.R = R result.K1 = K1 result.K2 = K2 result.scl1 = scl1 result.scl2 = scl2 result.phi = phi result.molarity = molarity result.modelname = inspect.currentframe().f_code.co_name return result
[docs] def fjc(Q, N, l=2): r""" Freely jointed chain structure factor. The structure factor is the structure of N freely jointed beads connected by linkers of equal length where the linkers represent an attractive interaction between neigboring beads leading to a guassian like configuration of a small cluster like a short polymer. The structure factor is normalized to 1 at large Q and N for Q=0. Parameters ---------- Q : array Wavevector in nm. N : float Number of beads (homogeneous spheres). l : float distace between beads in units nm. Returns ------- dataArray Columns [q, sq] Notes ----- Added after a remark of Peter Schurtenberger on a meeting to use this as a structure factor. The structure factor is calculated similar to the freely jointed chain formfactor with thin linkers and for equal point like bead formfactors. See :py:func:`~.formfactor.composed.pearlNecklace` [1]_. .. math:: S(Q) = 2/N \left[\frac{N}{1-sin(Ql)/Ql}-\frac{N}{2}- \frac{1-(sin(Ql)/Ql)^N}{(1-sin(Ql)/Ql)^2}\cdot\frac{sin(Ql)}{Ql}\right] Examples -------- The high Q modulation corresponds to the bead distance (local order). The low Q describes a random walk of N beads. :: import jscatter as js import numpy as np q=js.loglist(0.01,3,300) p=js.grace() p.plot(js.sf.fjc(q, N=5, l=3),le='N=5 l=3') p.plot(js.sf.fjc(q, N=5, l=6),le='N=5 l=6') p.plot(js.sf.fjc(q, N=7, l=3),le='N=7 l=3') p.plot(js.sf.fjc(q, N=7, l=6),le='N=7 l=6') p.yaxis(scale='l',label='S(q)',min=0.0001,charsize=1.5) p.xaxis(scale='n',label='q / nm\S-1',charsize=1.5,min=0,max=3) p.legend(x=1,y=3) p.title('freely jointed chain structure factor') p.subtitle('I(0)=N and I(inf) = 1') # p.save(js.examples.imagepath+'/fjcsf.jpg') .. image:: ../../examples/images/fjcsf.jpg :width: 50 % :align: center :alt: pearlNecklace References ---------- .. [1] Particle scattering factor of pearl necklace chains R. Schweins, K. Huber, Macromol. Symp., 211, 25-42, 2004. """ N = float(N) # always float # distance between centers of neighbouring spheres Ql = Q * l Z1 = 2 / N * (N / (1 - np.sinc(Ql)) - N / 2 - (1 - np.sinc(Ql) ** N) / (1 - np.sinc(Ql)) ** 2 * np.sinc(Ql)) result = dA(np.c_[Q, Z1].T) result.setColumnIndex(iey=None) result.columnname = 'q; sq' result.bondLength = l result.numberbeads = N return result